Station # 1 (Vocabulary)

Commutative Property - May change order when you add or multiply 6 + x = x + 6

$$8(9) = 9(8)$$

Associative Property - May change grouping when you add or multiply (6 + 3) + 7 = 6 + (3 + 7)

$$(8)(2n) = (8 \cdot 2)n$$

Definition of Subtraction - Subtraction = Add the opposite

$$x-7=x+^{-7}$$
 OR $9+^{-1}=9-1$

Multiplication Property of Zero - Multiply anything by zero, answer will be zero. 9(0) = 0

Identity Properties - Multiply by 1 OR Add 0 means the number will stay the same

Distributive Property-Multiplier outside () gets distributed to every number in the ()

$$-8(x + 3) = -8(x) + -8(3)$$

For the expression 8x - 2 - 2x + 9, rewrite as all addition $8x + ^-2 + ^-2x + 9$

The addition signs separate the terms.

(4 terms)

We are only applied to combine like terms.

7x and 2x 3a and -4a -9 and 2

Coefficients co-exist with the variable

The <u>co</u>efficient is the "multiplier"

In 8 + 4x the coefficient is 4

Constants are numbers NOT attached to a variable In the expression 8 + 4x, 8 is the constant.

Station #2 - (Using the Distributive Property to do Mental Math)

Study these examples :

$$8(2\frac{1}{4}) = 8(2 + \frac{1}{4})$$

$$= 8(2) + 8(\frac{1}{4})$$

$$= 16 + 2$$

$$= 18$$

Todd bought 6 notebooks and each notebook costs \$1.09. What was the total cost?

$$6(1.09) = 6(1 + 0.09)$$

= $6(1) + 6(0.09)$
= $6 + 0.54$
= \$6.54

$$4(2.98) = 4(3.00 - 0.02)$$

= $4(3.00) - 4(0.02)$
= $12.00 - 0.08$
= 11.92

Station # 3 - GCF and Factoring and Sequences

Study these examples

The GCF is the Greatest Common Factor.

It is the largest factor that is common to all terms.

GCF of
$$10x^2y$$
 and $4xy^2$ is $2xy$

Factor means to "Please make me into a multiplication problem"

We have looked at the strategy:

*Find the GCF-it is one of your factors

* "Undistribute" to get the other factor

Factor completely:

$$8ab - 6a = 2a(4b - 3)$$

$$6x + 2 = 2(3x + 1)$$

Sequence: 10, 16, 22, ____, ___

State the <u>rule</u> for this pattern.

The rule is to add 6 to the previous term to get the next term.

Find the next two terms.

$$22 + 6 = 28$$

$$28 + 6 = 34$$

So, 28 and 34

If the pattern in the chart continues, what algebraic expression can be used to find the plant's height after n months.

Month	Height(in)
1	7
2	14
3	21
n	

Multiply the month by 7, so (7n)

Station # 4 - Evaluate algebraic expressions for a given value AND Evaluate numerical expressions using two methods

Study these examples.

<u>To evaluate</u> algebraic expressions for a given value:

*Substitute number for variable
*use order of operations agreement

Examples:

1)
$$a^2 + 3$$
 if $a = -5$

$$(-5)^2 + 3$$
 $25 + 3$
 28

$$(2)(-5) - 2(-3)$$

 $-10 + ^{-}2(-3)$
 $-10 + 6$

Evaluate
$$-8(2 + -5)$$
 using two methods.

Find the value

<u>Method 1</u> - Order of operations

Method 2 - Use distributive property

Station # 5 - Simplify algebraic Expressions

Study these examples.

To simplify an expressions:

- * Rewrite all subtraction as "add the opposite"
- * Use the distributive property to "clear the parentheses"
- * Add and Subtract "like terms"

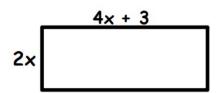
Simplify: -2(-3x - 8) -2(-3x + -8) -2(-3x) + -2(-8)6x + 16

Simplify: 5(-4x + 3) - 3(x - 2) $5(-4x + 3) + ^{-}3(x + ^{-}2)$ 5(-4x) + 5(3) + -3(x) + -3(-2)-20x + 15 + -3x + 6

$$10x - (3x - 4) + 5$$

$$10x + -1(3x + -4) + 5$$

$$10x + -1(3x) + -1(-4) + 5$$


$$10x + -3x + 4 + 5$$

Simplify:

Station # 6 - Algebraic Expressions from words and pictures

Study these examples.

Find the perimeter.

Perimeter = add up all sides

$$P = (4x + 3) + 2x + (4x + 3) + 2x$$

 $P = 4x + 3 + 2x + 4x + 3 + 2x$

$$P = 12x + 6$$
 units

OR

$$P = 2(1 + w)$$

 $P = 2(4x + 3 + 2x)$
 $P = 2(6x + 3)$
 $P = 2(6x) + 2(3)$
 $P = 12 + 6$ units

It costs \$3 to rent bowling shoes for the day and 55 for each game you bowl. Write the simplified algebraic expression for the cost of bowling g games.

cost = shoe rental cost + cost of g games
at \$5 per game
=
$$3 + 5g$$

= $5q + 3$

Jenni buys 3 spiral notebooks that cost *n* dollars each and 2 binders that cost *b* dollars each. Write the simplified algebraic expression for the total cost.

Total cost = cost of notebooks + cost of binders

$$=$$
 $3n + 2b$