Accelerated Math - KEY to ch. 7 Study Guide on Expressions

Key to examples:

1) Evaluate
$$4a - 2b^2$$
 if $a = and b = -3$
 $4(\frac{3}{4}) - 2(-3)^2$

$$4(\frac{3}{4})$$
 - 2(9)

$$3 - 18$$

$$3 + -18$$

2) Circle the examples of like terms:

_	_	_
V	and	RV
	unu	

9y and 2y²

3 and 3x

7x and 6y

8 and -1

5ab and -3ab

True or False? For the algebraic expression 7x - 2 + 5y - 6x

- __7 is a coefficient (T)
- ___5 is a constant (F)
- ___-2 is a constant (T)
- ___ 6 is a coefficient (F)
- ___There are three terms (F)

Write an algebraic
expression with the
following characteristics:
three terms
two like terms
a constant of 5
a coefficient of -3

ANSWERS VARY

Example: -3x + 4x + 5

Key to examples:

3) Write algebraic expressions for the following:

Write a simplified algebraic expression for the perimeter of a rectangle whose length is (2x + 3) and width is (x + 2)

$$P = 2I + 2w$$

 $P = 2(2x+3) + 2(x+2)$
 $P = 2(2x) + 2(3) + 2(x) + 2(2)$
 $P = 4x + 6 + 2x + 4$
 $P = 6x + 10$

Aaron is (5x + 2) inches tall and Ben is (8x - 3) inches tall. Write a simplified algebraic expression for how much taller Ben is than Aaron. (8x-3)-(5x+2) 8x+-3+(-1)(5x+2) 8x+-3+(-1)(5x)+(-1)(2) 8x+-3+-5x+-2

3x + -5

3x - 5

Key to examples:

$$7x + x$$
 $(6x + 2) + 2(4x + 1)$

$$6x + 2 + 2(4x) + 2(1)$$

 $6x + 2 + 8x + 2$
 $14x + 4$

$$6x - y + 9 - 8x - 2y$$

$$6x + 1y + 9 + -8x + 2y$$

$$-2x + -3y + 9$$

 $-2x - 3y + 9$

$$3(2x + 4)$$

$$4 - (3x - 2) + 8x$$

$$-8(x + 2) - 4(5x - 3)$$

-28x - 4

$$3(2x) + 3(4)$$

$$4 + -1(3x + -2) + 8x$$

$$4 + (-1)(3x) + -1(-2) + 8x$$

$$4 + -3x + 2 + 8x$$

$$-8(x) + -8(2) + -4(5x + -3)$$

$$-8x + -16 + -4(5x) + -4(-3)$$

$$-8x + -16 + -20x + 12$$

$$-28x + -4$$

2(4
$$\frac{1}{2}$$
)

2(4 +
$$\frac{1}{2}$$
)

$$2(4) + 2(\frac{1}{2})$$

8 + 1

Key to Examples:

6) Find the GCF and factor linear expressions. (See p.416-417)

Factor completely if possible: 8x(2 + x) $16x + 8x^2$ 3(5x + 1) 15x + 3 Not Factorable 4x + 7y

$$\frac{2}{3}(x+36)$$
 $\frac{2}{3}x+24$

Find the GCF of the following pairs of monomials

6ab, 15a _____ (3a) 9b², 14b _____ (b) 64xy², 48x²y _____ (16xy)

7) Circle the equivalent expressions. Show why they are or are not equivalent.

7x - 1 = 1 - 7x $\overbrace{1x = -x}$

Subtraction not commutative Identity Property of Multiplication

8 + (4 + 3) = 8(4) + 8(3) Distributive property needs two operations

9x + -2 = 9x - 2

Subtraction is the same as adding the opposite

2(4x + 8) = 8(x + 2) 2(4x) + 2(8) = 8(x) + 8(2) 8x + 16 = 8x + 16

-4 - y = -1(y - 4)

Choose the right side to simplify
-1(y + -4) Change - to + -1(y) + -1(-4) Distributive property

-1y + 4

4 + -y (commutative property
4 - y (definition of subtraction)
Not the same as -4 - y

-5x + 3 = 3 - 5x

= 3 + -5x (Def of subtraction) = -5x + 3 (commutative) 8) Simplify algebraic expressions completely by showing all steps shown in class.

A)
$$-7x + 2x + 10 + x$$
 $-4x + 10$

B)
$$(6x - 2) - (-5x + 7)$$

 $6x - 2 + -1(-5x + 7)$
 $6x + -2 + -1(-5x) + -1(7)$
 $6x + (-2) + 5x + (-7)$
 $11x + -9$
 $11x - 9$

C)
$$4 + 6(-2x + 5)$$

 $4 + 6(-2x) + 6(5)$
 $4 + -12x + 30$

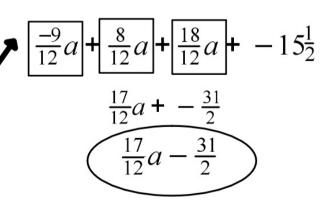
D)
$$-x - 4x - 8 - 3x - 7$$

 $-1x + -4x + -8 + -3x + -7$
E) $-5(x - 3) - 6(2x - 4)$
 $-5(x + -3) + -6(2x + -4)$
 $-5(x) + -5(-3) + -6(2x) + -6(-4)$

$$-5(x + -3) + -6(2x + -4)$$

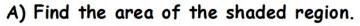
$$-5(x) + -5(-3) + -6(2x) + -6(-4)$$

E) -5(x - 3) - 6(2x - 4)


F)
$$10x + 2(-7x + 1)$$

 $10x + 2(-7x) + 2(1)$
 $10x + -14x + 2$

$$-8x - 15$$

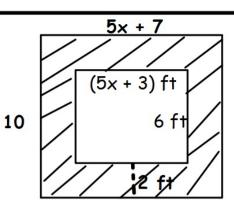

$$-5x + (15) + -12x + (24)$$
 $-17x + 39$

$$-4x + 2$$

6)
$$-\frac{3}{4}(a+2) + (\frac{2}{3}a-8) - \frac{3}{8}(-4a+16)$$

 $\frac{-3}{4}(a) + \frac{-3}{4}(2) + \frac{2}{3}(a) + -8 + \frac{-3}{8}(-4a+16)$
 $\frac{-3}{4}a + \frac{-3}{2} + \frac{2}{3}a + -8 + \frac{-3}{8}(-4a) + \frac{-3}{8}(16)$
 $\frac{-3}{4}a + (\frac{-3}{2}) + (\frac{2}{3}a) + (-8) + (\frac{3}{2}a) + (-6)$

9) Solve application problems that involve percents.



$$A_{\text{shaded part}} = 10(5x + 7) - 6(5x + 3)$$

$$A_{\text{shaded part}} = 50x + 70 + -6(5x + 3)$$

$$A_s = 50x + 70 + -30x + -18$$

$$A_s = 20x + 52 \text{ sq ft}$$

The shaded area has a width of 2 ft all the way around.

B) The area of a square is 8x + 12 square units. Find all possible dimensions that do not involve fractions.

x means "by" when you do dimension:

$$1 \times (8x + 12)$$

$$2 \times (4 \times + 6)$$

$$4\times(2\times+3)$$

C) The perimeter of a square is 24x - 16. Find the length of one side of the square.

one side is
$$\frac{24x-16}{4} = \frac{4(6x-4)}{4} = 6x-4$$

10) Be able to show the mathematics behind "math magic" problems.

Follow these steps with a number of your choice and then let the number be n and show how it works algebraically

Choose a number	Number Example 10	<u>Algebraic Steps</u> n
Add 8	18	n + 8
Multiply by 6	108	6(n+8) = 6n + 48
Subtract 12	96	6n + 48 - 12 = 6n + 36
Divide by 6	16	$\frac{6n+36}{6} = \frac{6(n+6)}{6} = n+6$
Subtract the original number	° 6	n + 6 - n = 6