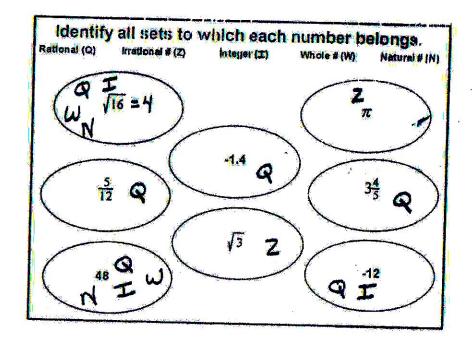


A <u>rational</u> number is a number that can be written as a ratio in the form $\frac{a}{b}$ where a and b are integers and b $\neq 0$

We can verify these are rational numbers by using the definition.

If a number is a rational number, it can be written either as a repeating decimal or a terminating decimal.


 $\frac{3}{2}$ is rational because 1.5 is terminating decimal.

 $\frac{1}{3}$ is rational because $0.\overline{3}$ is a repeating decimal.

is NOT rational (It is irrational) because the decimal 1.4142136 continues but never repeats in a pattern that we could identify with bar notation.

Other irrational #'s

When we use rational numbers we often need to find an equivalent form of the number to understand the situation.

Payton has a "two ninety six" batting average.

The scale at the deli counter says 0.7 and Josh asked for three fourths of a pound of ham.

Ways to compare rational numbers:

- *Use a 0 $\frac{1}{2}$ 1 benchmark chart
- *Write all numbers as decimals
- *Write all numbers as fractions with like denominators
- *Use a combination of the above strategies

Write these numbers in order from smallest to largest: 0.006 $\frac{73}{75}$ 0.57 $\frac{7}{500}$ $\frac{5}{16}$

Close to 0 Close to
$$\frac{1}{2}$$
 Close to 1
$$006 = \frac{1}{16}$$

$$006 = \frac{1}{16}$$

$$006 = \frac{1}{16}$$

Write these numbers in order from smallest to largest:
$$\frac{3}{5}$$
 0.62 0.007 $\frac{5}{9}$ $\frac{3}{50}$

Close to 0 | Close to $\frac{1}{2}$ | Close to 1

2 $\frac{3}{50}$ = .06 | 3 $\frac{5}{5}$ = .5

D .007 | 3 $\frac{5}{5}$ = .5